Conductive artificial biofilm dramatically enhances bioelectricity production in Shewanella-inoculated microbial fuel cells.

نویسندگان

  • Yang-Yang Yu
  • Hai-Lan Chen
  • Yang-Chun Yong
  • Dong-Hwan Kim
  • Hao Song
چکیده

A new strategy of electrogen immobilization was developed to construct a conductive artificial biofilm (CAB) on an anode of a microbial fuel cell (MFC). The MFCs equipped with an optimized CAB exhibited an eleven fold increase in power output compared with natural biofilms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterizing the snorkeling respiration and growth of Shewanella decolorationis S12.

Microbial electrochemical snorkel (MES) reactor is a simplified bioreactor based on microbial fuel cells (MFCs) and has been suggested to be a promising approach to solve many environmental problems. However, the microbial processes in MES reactors have not yet been characterized. This study shows that Shewanella decolorationis S12 can use the conductive snorkel as direct electron acceptor for ...

متن کامل

Application of dual chamber microbial fuel cell with aeration cathode for bioelectricity generation and simultaneous industrial wastewater treatment

Background and Objective: Microbial fuel cell (MFC) is a new green technology that uses the catabolic ability of microorganisms to produce bioenergy while simultaneously removing organic matter and other wastewater contaminants. Electrode material is one of the factors affecting the performance of microbial fuel cells. The aim of this study was to investigate the performance of microbial fuel c...

متن کامل

Engineering Shewanella oneidensis enables xylose-fed microbial fuel cell

BACKGROUND The microbial fuel cell (MFC) is a green and sustainable technology for electricity energy harvest from biomass, in which exoelectrogens use metabolism and extracellular electron transfer pathways for the conversion of chemical energy into electricity. However, Shewanella oneidensis MR-1, one of the most well-known exoelectrogens, could not use xylose (a key pentose derived from hydr...

متن کامل

The performance of a microbial fuel cell depends strongly on anode geometry: a multidimensional modeling study.

A multidimensional biofilm model is developed to simulate biofilm growth on the anode of a Microbial Fuel Cell (MFC). The biofilm is treated as a conductive material, and electrons produced during microbial growth are assumed to be transferred to the anode through a conductive biofilm matrix. Growth of Geobacter sulfurreducens is simulated using the Nernst-Monod kinetic model that was previousl...

متن کامل

In Situ Analysis of a Silver Nanoparticle-Precipitating Shewanella Biofilm by Surface Enhanced Confocal Raman Microscopy

Shewanella oneidensis MR-1 is an electroactive bacterium, capable of reducing extracellular insoluble electron acceptors, making it important for both nutrient cycling in nature and microbial electrochemical technologies, such as microbial fuel cells and microbial electrosynthesis. When allowed to anaerobically colonize an Ag/AgCl solid interface, S. oneidensis has precipitated silver nanoparti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemical communications

دوره 47 48  شماره 

صفحات  -

تاریخ انتشار 2011